はじめに
Pineconeでは、ベクトルデータを更新する際に、全部更新を行うupsert
と、部分更新を行うupdate
の二つのAPIがあります。この記事では、これらのAPIの使い分けについて説明します。
インデックスの作成
次のコマンドやコードを実行してPineconeのインデックスを作成します。
bash
$ pip install -U pinecone-client
python
import pinecone
pinecone.init(
api_key="API_KEY",
environment="ENVIRONMENT"
)
if "sample" not in pinecone.list_indexes():
pinecone.create_index("sample", dimension=1536)
index = pinecone.Index("sample")
データの追加
ベクトルデータを登録します。
python
index.upsert(
vectors=[{
"id": "1",
"values': [0.0] * 1536,
"metadata": {
"content": "This is a sample vector"
}
}],
namespace='my_namespace'
)
res = index.fetch(
ids=["1"],
namespace="my_namespace"
)
print(res["vectors"]["1"]["metadata"])
{'content': 'This is a sample vector'}
データの更新
データを更新するには、update
やupsert
のAPIにid
を指定してデータを更新します。upsert
を使う場合は次のようになります。
python
index.upsert(
vectors=[{
"id": "1",
"values": [0.0] * 1536,
"metadata": {
"content": "Updated"
}
}],
namespace="my_namespace"
)
res = index.fetch(
ids=["1"],
namespace="my_namespace"
)
print(res["vectors"]["1"]["metadata"])
{'content': 'Updated'}
ベクトルを作るのにコンピューティングリソースがかかります。ベクトルを再生成する必要がない場合は、update
でmetadata
のみの更新をするのが良いです。
python
index.update(
id="1",
setMetadata={
"content": "Only metatada updated"
},
namespace="my_namespace"
)
res = index.fetch(
ids=["1"],
namespace="my_namespace"
)
print(res["vectors"]["1"]["metadata"])
{'content': 'Only metatada updated'}
AlloyDB
Amazon Cognito
Amazon EC2
Amazon ECS
Amazon QuickSight
Amazon RDS
Amazon Redshift
Amazon S3
API
Autonomous Vehicle
AWS
AWS API Gateway
AWS Chalice
AWS Control Tower
AWS IAM
AWS Lambda
AWS VPC
BERT
BigQuery
Causal Inference
ChatGPT
Chrome Extension
CircleCI
Classification
Cloud Functions
Cloud IAM
Cloud Run
Cloud Storage
Clustering
CSS
Data Engineering
Data Modeling
Database
dbt
Decision Tree
Deep Learning
Descriptive Statistics
Differential Equation
Dimensionality Reduction
Discrete Choice Model
Docker
Economics
FastAPI
Firebase
GIS
git
GitHub
GitHub Actions
Google
Google Cloud
Google Search Console
Hugging Face
Hypothesis Testing
Inferential Statistics
Interval Estimation
JavaScript
Jinja
Kedro
Kubernetes
LightGBM
Linux
LLM
Mac
Machine Learning
Macroeconomics
Marketing
Mathematical Model
Meltano
MLflow
MLOps
MySQL
NextJS
NLP
Nodejs
NoSQL
ONNX
OpenAI
Optimization Problem
Optuna
Pandas
Pinecone
PostGIS
PostgreSQL
Probability Distribution
Product
Project
Psychology
Python
PyTorch
QGIS
R
ReactJS
Regression
Rideshare
SEO
Singer
sklearn
Slack
Snowflake
Software Development
SQL
Statistical Model
Statistics
Streamlit
Tabular
Tailwind CSS
TensorFlow
Terraform
Transportation
TypeScript
Urban Planning
Vector Database
Vertex AI
VSCode
XGBoost