Introduction
In this article, I will walk you through the process of converting a TensorFlow model to ONNX format, checking the converted model, and performing inference using the ONNX model.
Preparing the TensorFlow Model
In this chapter, I will cover the installation of necessary dependencies, the loading of the model.
Installing Dependencies
Before starting, ensure that you have Python 3.6 or higher installed on your system. Then, install the required packages for TensorFlow and tf2onnx using pip:
$ pip install tensorflow
$ pip install tf2onnx
Loading the Model
To load a TensorFlow model, you can use the load_model
function from the tensorflow.keras.models
module. This function can handle both SavedModel format and HDF5 format.
For a SavedModel, pass the path to the directory containing the model:
import tensorflow as tf
model_path = "path/to/your/tensorflow/saved_model"
model = tf.keras.models.load_model(model_path)
For an HDF5 model, pass the path to the .h5
file:
model_path = "path/to/your/tensorflow/model.h5"
model = tf.keras.models.load_model(model_path)
If your model has custom layers or components, you may need to provide a custom_objects dictionary to the load_model function:
custom_objects = {
'CustomLayer': CustomLayer,
'custom_metric': custom_metric
}
model = tf.keras.models.load_model(model_path, custom_objects=custom_objects)
Converting the Model to ONNX
In this chapter, I will explore the process of converting a TensorFlow model to ONNX format using the tf2onnx library. We will discuss the conversion process, customization options.
Performing the Conversion with tf2onnx
To convert a TensorFlow model to ONNX format, we will use the convert.from_keras
function from the tf2onnx
module. This function takes the TensorFlow model as its main argument and returns a protobuf object representing the ONNX model:
import tf2onnx
# Perform the conversion
model_proto, _ = tf2onnx.convert.from_keras(model)
Next, save the protobuf object as an ONNX file:
output_onnx_model = "path/to/output/onnx/model.onnx"
with open(output_onnx_model, "wb") as f:
f.write(model_proto.SerializeToString())
Customizing the Conversion Process
You can customize the conversion process by providing additional arguments to the from_keras()
function. Some of the commonly used arguments are:
target_opset
: Specify the target ONNX opset version to use. The default is the latest opset version supported by tf2onnx.
model_proto, _ = tf2onnx.convert.from_keras(model, target_opset=12)
large_model
: If your model is too large to fit in memory, you can enable this option to convert the model in chunks.
model_proto, _ = tf2onnx.convert.from_keras(model, large_model=True)
output_names
: Provide a list of output names for the ONNX model. By default, the output names from the TensorFlow model are used.
output_names = ["output1", "output2"]
model_proto, _ = tf2onnx.convert.from_keras(model, output_names=output_names)
For more customization options, refer to the tf2onnx documentation.
Checking the Converted ONNX Model
In this chapter, I will discuss how to inspect and validate the converted ONNX model. We will cover methods for verifying the model's structure, testing its accuracy.
Verifying the Model Structure
To inspect the structure of the converted ONNX model, use the onnx
library to load the model and perform a series of checks:
import onnx
onnx_model = onnx.load(output_onnx_model)
onnx.checker.check_model(onnx_model)
This will raise an exception if the model is invalid or contains unsupported operations. If the model passes the checks, you can proceed to test its accuracy.
Testing the Model's Accuracy
To test the accuracy of the ONNX model, run inference on both the original TensorFlow model and the converted ONNX model, and compare their outputs. You can use the following steps:
- Prepare a sample input for the models:
import numpy as np
input_data = np.random.rand(1, 224, 224, 3).astype(np.float32)
- Run inference on the TensorFlow model:
tf_output = model.predict(input_data)
- Run inference on the ONNX model using the ONNX Runtime:
from onnxruntime import InferenceSession
sess = InferenceSession(output_onnx_model)
input_name = sess.get_inputs()[0].name
onnx_output = sess.run(None, {input_name: input_data})
- Compare the outputs and calculate the difference:
difference = np.abs(tf_output - onnx_output).max()
print("Difference:", difference)
- Check if the difference is within an acceptable range:
assert np.allclose(tf_output, onnx_output, rtol=1e-05, atol=1e-07), "Output values do not match"
Inference using the Converted ONNX Model
In this chapter, I will demonstrate how to perform inference using the converted ONNX model. We will discuss how to load the ONNX model with ONNX Runtime, prepare input data, run inference, and process the output.
Loading the ONNX Model
To load the converted ONNX model, use the ONNX Runtime's InferenceSession class:
from onnxruntime import InferenceSession
sess = InferenceSession(output_onnx_model)
Preparing Input Data
Prepare the input data for the model. The input data should match the expected input shape and data type of the model. For example:
import numpy as np
input_data = np.random.rand(1, 224, 224, 3).astype(np.float32)
Running Inference
To run inference with the ONNX model, call the run
method on the InferenceSession
object. You need to provide a dictionary that maps input names to their corresponding input data:
input_name = sess.get_inputs()[0].name
output = sess.run(None, {input_name: input_data})
In this example, we pass None
as the first argument to the run
method, which means that the outputs of all output nodes will be returned. Alternatively, you can provide a list of output names to obtain the outputs of specific nodes.
Processing the Output
After running inference, you can process the output to obtain the desired information or predictions. The output format will depend on the specific model and task. For example, if the model is a classifier, you might want to find the class with the highest probability:
predicted_class = np.argmax(output[0], axis=-1)
print("Predicted class:", predicted_class)
References